

Energetically, it is clear that the large-scale conversion of CO2 to useful products requires a source of external energy that is not fossil-fuel derived; otherwise, the conversion process becomes itself a source of CO2 emissions. Sources for the required energy could be direct solar or nuclear energy, or electricity generated from these primary energy resources. Obviously, a source of CO2 is also required; however, all sources are of equal value. Atmospheric and mobile emissions are of little value due to the problems associated with collecting and concentrating them. Whereas, CO2 from stationary point sources, and in particular large point sources such as coal and natural gas-fired power plants, are the 鈥渓ow hanging fruit鈥 for implementing carbon re-use. Finally, useful products from CO2 must be identified. It is suggested here that instead of pursuing a piecemeal approach consisting of an assortment of finished chemicals and material goods, a holistic approach be taken. Currently, the only existing commodity market that is big enough to absorb the large scale re-utilization of CO2 lies in the petroleum sector. Thus, the basis for any carbon re-utilization platform should be the production of a petroleum substitute, a 鈥渟ynthetic鈥 oil that may be refined and converted into a multitude of finished products.
This paper first compares and contrasts carbon storage with carbon utilization, and then moves on to quantify the scale of any carbon re-utilization effort; as well as, CO2 life-cycle limitations of re-use. After all, in this approach much of the synthetic oil, like petroleum, will end up being (re-) combusted as an end-use transportation fuel. Thus, carbon re-use can only be considered as an interim strategy for cost effectively transitioning away from fossil fuels. We also briefly touch on the implications of large scale carbon re-use for CCS R&D, since the requirements for CO2 capture, transport and short-term storage will be quite different than what is anticipated for long-term CO2 sequestration. Finally, we briefly discuss the possible economic implications of this strategy. A follow-on paper at this conference identifies and analyzes what the present and best future options for producing a CO2-derived synthetic oil might be.