SUMMARY REPORT

TEACHING OF UNDERGRADUATE PROCESS DYNAMICS AND CONTROL

A Mini-session Presented at the

Annual Meeting

Chicago, Illinois

November 12, 1985

INTRODUCTION

In 1971, the Chemical Engineering Education
Projects Committee conducted a survey on the teaching of

It is interesting to note the dominance of a single textbook in a given field. Surveys conducted in the 7--

TABLE 1

NUMBER OF COURSES

	SEMESTER BASIS REPLIES	QUARTER BASIS REPLIES	1985 PERCENT	(1975) (PERCENT)	
			F	40.0	
7 -					
<u>*</u>					
) 					
, , , , , , , , , , , , , , , , , , ,	1 B	<i>,</i>			
,			•		
T.WO	1 7	9	23	(26)	
Three	1	1	23	(2)	
	86	24			
Is the course requi	red?	REF	LIES		
is the course requi	Yes)2 .8		
	No		.0		
	TAB	LE 2			
	PLACEMENT IN	THE CURRICUL	MUL		
Semester Basis		REPLIES	1985 PERCENT	1975 PERCENT	•
Semester basis					
Junior, 1	st Semester	1	1	(13)	
Tynion 2	<u>nd Semester</u>	12	14		
Senior, l	st Semester	30	35	(87)	
Senior, 2	nd Semester	43	50		
		86			
Vasa bacia			· ,		

Junior, 3rd Quarter

(13)

13

20

3

CLASS DATA

Sections offered (1984-85)	Replies	£ 135
	Replies	
0 1 2 3 4	2 63 16 3 3 —	
Enrollment per	Section	
15- 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75 76-80	15 12 13 19 9 12 4 9 3 2 4 2 1 2	
	Enrollment per 15- 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75	1 63 2 16 3 3 4 3 Enrollment per Section 15- 15 16-20 12 21-25 13 26-30 19 31-35 9 36-40 12 41-45 4 46-50 9 51-55 3 56-60 2 61-65 4 66-70 2 71-75 76-80 2

Average

110

34.1

•	REPLIES	1985 PERCENT	(1975) (PERCENT)
Course emphasis	KBrarba	BROBELL	(LZIVOZIVI)
Math modeling-analytical	90	82	(78)
Math modeling-empirical	54	49	(33)
Control	108	98	(88)
Instrumentation	33	30	(27)
Others		•	
Simulation	4	4	(8)
Stability	4	4	
"Others"	16	15	
Lectures are reinforced with:			
needules ale leine leed with			
Classroom demonstrations	44	40	(33)
Audio-Visual Aids	45	41	(33)
Lab Experiments	75	68	(75)
None of the Above	13	12	
Others			
Computer simulations	8	7	

BJECTIVES	EXPERIMENTS
odeling real processes ealize need for control	Liquid level in two tanks Measuring dynamics of unknown
Jargon of process control	transfer function set up on
bargon or process control	analog computer
PRETMENTS	Divert dimital control analog.
B r	
1	
3 · ·	
Using the PDP11/04 Computer	computer
D. D. Lander Dumaming	0 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
First-order Process Dynamics Impulse testing of a mixing tank	Supervisory control of two reactor batterys - Apple IIe and Isaac
Real-time Program on the PDP 11/04	91A interface
Les Walden Lingiam ou oue to	71k litterrace
Flectronic Analog controllers	
Flactronic Analog controllers	
Fleetronic Analog controllers	
Flactronic Analog controllers	
Flactronic Analog controllers	
	UNIVERSITY OF BUCKNELL
Pneumatic Analog controllers Derivative control	UNIVERSITY OF BUCKNELL Process Control
Pneumatic Analog controllers	Process Control
Pneumatic Analog controllers Derivative control	
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control
Pneumatic Analog controllers Derivative control	Process Control

OBJECTIVES development DIFFICULT CONCEPTS Linearization

EXPERIMENTS Dynamic behavior of interacting Microprocessor control and non-interacting tank sysptimum adjustment of PID contems troller Level controller tuning Behavioral system dynamics MANHATTAN COLLEGE LOUISIANA STATE UNIVERSITY Process Control Process Dynamics DIFFICULT CONCEPTS DIFFICULT CONCEPTS <u>Unstead</u>y-state mass and energy Block diagrams and instrumentation 2.2. Importance of temperature, level, Relationship of steady-state to problem variables and flow controllers to pro-1 ----- / man 1 inaga di Efamantial resses. equations OBJECTIVES Control objectives and instrumen-OBJECTIVES tation requirements for typical Transfer functions, lags, dead-Jargon of control and control Readback food forward ratio and

EXPERIMENTS

cascade control systems design

EXPERIMENTS

Manual and automatic operation of a process furnace Determination of gains and time

loops Analytical and empirical math solution methods -Controller tuning

EXPERIMENTS

OBJECTIVES Simple time constant Classic controller functions Feedback closed-loop control Determination of control constants

EXPERIMENTS Double effect evaporation

UNIVERSITY OF NEBRASKA Automatic Process Control and Laboratory

PTDDICHT CONCEDTE

EXPERIMENTS

Level control Pressure control (single capacity process)

Use of digital controller in tuning

UNIVERSITY OF NEW BRUNSWICK Process Dynamics and Control

DIFFICULT CONCEPTS Unsteady-state analysis of otherwise well-understood systems Relating analytical theory to

Mathematical modeling of processes
Experimental analysis of process
dynamics
Stability analysis
Controller selection and tuning

Process Modeling, Analysis, and Control

DIFFICULT CONCEPTS

OBJECTIVES

Qualitative understanding of complex variables and their application

Impulse response of stirred tank
Sensing means and signal conditioning
Air-operated controllers
Frequency response - one and two stage RC filters

Step response - stirred tank and

EXPERIMENTS
Process Simulator

Linear dynamics

Role of feedback

UNIVERSITY OF NORTH DAKOTA
Chemical Process Dynamics

heat exchanger

OHIO UNIVERSITY

Process Control and Laboratory

Control design strategies

DIFFICULT CONCEPTS

FYPERTMENTS___

DIFFICULT CONCEPTS
Modeling

OBJECTIVES	ROSE-HULMAN INSTITUTE OF TECHNOLOGY Process Control

Behavior of 2nd-order systems	. Cham magnanan of lat and and and	
y		
),	
,		
<u></u>		
-		
	х ———	
• '		
(
7,		
T		
		- <u> </u>
	-	
-		
) . <u></u>	
	\$	
	\$	
	\$	
<u>-</u>		
F4		
	7;	
<u>-</u>	7;	
OBJECTIVES	7	
OBJECTIVES Behavior of 1st and 2nd-order systems	order system	
OBJECTIVES Behavior of 1st and 2nd-order	order system	

France.

EXPERIMENTS Level control (1st and 2nd order)	OBJECTIVES Math modeling	
	-	
	* cont.	
	₹	
	,	_
control Step response transfer function measurement	Stability analysis Digital simulation and centrol	
		;
Frank in the second sec	riouid laws) control	
, , .		

EXPERIMENTS

Air pressure regulation
Pressure sensor calibration
Temperature sensor response
characteristics
Flow metering and control valves
Liquid Level system dynamics

OBJECTIVES

Understand need of process control
Meaning and importance of deadtime, gain, time constant
Setting a feedback controller and
additional control techniques
(ratio. cascade FFC)

Thermal system dynamics	
Discours cucken dinamina	PVDCDTMCNTC
	- 1 1-44 mad-13
<u> </u>	
·	&
	-
On-line tuning	Tuning feedback controllers Scale computing blocks
Controller calibration	Ratio control and setting cascade
	<u> </u>
	-1 .

UNIVERSITY OF TULSA Process control

DIFFICULT CONCEPTS
Linearization details

TECHNICAL UNIVERSITY OF NOVA SCOTIA
Process Control I, II and III

DIFFICULT CONCEPTS
Stability concept
Translation of block diagram to

control
Transfer functions (meaning)
Dynamic behavior system
Basic control elements

OBJECTIVES
Understanding of control
techniques in industry
Clear idea of control logic and

WASHINGTON STATE UNIVERSITY Process Control

DIFFICULT CONCEPTS
Frequency domain stability

OBJECTIVES
Introduction to dynamics of
systems
Controller design techniques
Digital controller testing

ALIFORNIA STATE POLYTECHNIC UNIVERSITY
POMONA

(introduction)

EXPERIMENTS
Liquid level control
Tanks in series
Introduction to microcomputers

YALE UNIVERSITY
Process Control

DIFFICULT CONCEPTS
Stability, frequency response, ztransformer, Nyquist plots

OBJECTIVES

OBJECTIVES
System concepts
Dynamics
Concept or feedback control

FYPERTMENTS

Frequency response controller design
Nyquist stability

OBJECTIVES
Time dependent response of chemical

Feedback control of tank heater Distillation column

UNIVERSITY OF PUERTO RICO
Process Analysis and Control

DIFFICULT CONCEPTS

Making students think in terms of dynamics of processes instead

engineering systems

Math models

Solving equations and making up

model

Control

EXPERIMENTS
Liquid level
Process simulation - analog
simulator - Conversion from